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Abstract
We discuss the derivation and use of a key feature of a new version of
thermodynamic perturbation theory (TPT) that Ben-Amotz and Stell have
developed recently—the choice of a hard-core diameter to be used in modelling
soft-core systems. We go on to show the way the new version of TPT can be used
as input for the self-consistent Ornstein–Zernike approach (SCOZA) of Høye
and Stell to obtain highly accurate static structure factors and thermodynamics
for fluids and glasses. In obtaining quantitatively useful results for the structural
arrest and other dynamic features in colloidal systems with pair potentials that
include strong short-range attraction, accurate structure factors are a necessity.

1. Introduction

For Hamiltonian models with hard-core pair potentials,first-order thermodynamic perturbation
theory (TPT) has been shown to become more and more accurate at any fixed temperature as
the density approaches close packing [1, 2]. TPT has consequently become a valuable tool in
the study of high-density liquid–liquid, liquid–solid and solid–solid transitions as well as other
high-density thermodynamic effects in such models [3–7]. In studying such effects in colloids
in which the colloid–colloid interactions include soft-core repulsion and strong short-range
attraction, existing TPT recipes must be generalized in a fundamental way. We have made
much progress in this connection recently, as set forth in a sequence of three articles [8–10].
Our contribution to these proceedings represents a fourth article in this series.

An integral part of modern TPT is the use of a hard-sphere reference system in modelling
potentials that do not have a hard core, and typically one introduces an effective hard-core
diameter that depends on the thermodynamic state in order to mimic the thermodynamic
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effects of the softness of the actual repulsive core [11–17]. In earlier TPT treatments, the
resulting thermodynamics has proven to be extremely sensitive to the precise recipe used to
determine the state dependence of the core diameter. We have developed a highly accurate
version of TPT that is also highly robust and exceedingly simple to implement analytically,
with a core diameter given by a recipe first developed by Boltzmann. It is the derivation and
use of this recipe that we shall be primarily concerned with in this paper.

The version of TPT we have developed seems especially pertinent to the sort of colloid–
colloid interactions that are being used to model and understand structural–arrest transitions.
Here one is typically using an effective pair potential with a hard core to model an interaction
with a repulsive core that in fact is not at all hard, and the issue of how to determine the core
diameter in such a model seems crucial to the task of making quantitatively accurate contact
with experimental results.

In addition to being of direct use in describing thermodynamics, our version of TPT can
also be used as input for the self-consistent Ornstein–Zernike approach (SCOZA) that Stell
and co-workers have developed. The SCOZA has already been shown to be of great value
as a method for determining highly accurate structure factors and thermodynamic properties
of colloid–fluid models with pair potentials that have strong short-range attraction and hard-
core repulsion [18, 19]. An outstanding challenge has been to extend SCOZA modelling to
potentials that have soft-core repulsion. Our recent TPT results provide an effective way of
meeting this challenge, as we shall discuss in section 4 of this paper.

The thermodynamic perturbation theory of liquids traces its roots back to ideas developed
by van der Waals [20] and Boltzmann [21], who suggested that the structure of a liquid
is dictated primarily by repulsive intermolecular interactions, while cohesive interactions
determine its energy. This implies that repulsive and attractive portions of an intermolecular
pair-potential contribute more-or-less independently to fluid thermodynamics, and may each
best be described using different types of approximation strategies. In particular, the structure
and entropy of a fluid may be equated with that of an appropriately chosen repulsive reference
fluid, while cohesive interactions may be treated as a perturbation, evaluated by averaging over
the reference structure fluid structure. This fundamental understanding has held up remarkably
well over the intervening years and has in fact played a central role in the later evolution of
fluid statistical mechanics [11–17, 22–27], culminating in the liquid perturbation theory of
Barker and Henderson (BH) and of Weeks, Chandler and Andersen (WCA). In our recent
work [10] we revisited the WCA theory and showed that it may be viewed as a special case
of a family of perturbation theories which differ in subtle but significant ways from either the
WCA treatment or other previous formulations of liquid perturbation theory [11–17, 22–27].
Our work was focused on demonstrating the fundamental soundness and exceptional accuracy
of this new formulation, as well as its significant practical advantages.

The original WCA theory extended previous perturbation theories by introducing two key
refinements: the first involves the way in which the intermolecular potential is separated into
repulsive and attractive contributions, and the second pertains to the method used to relate
the thermodynamic properties of a soft-repulsive reference fluid to that of a hard-sphere (HS)
fluid [14–17, 23]. The combination of these features produced a firmly grounded theory of
unrivalled elegance and accuracy. The new theory of Ben-Amotz and Stell (BAS) described
in [10] retains the essential features of the WCA theory, but introduces a subtle change in the
way these are combined.

The original WCA theory may be viewed as a perturbation theory with a soft-repulsive
reference fluid, whose properties are in turn approximated using a HS fluid. The new
formulation differs from the WCA theory only in that it is better described as a HS perturbation
theory, with a WCA correction introduced to represent the influence of soft repulsive
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interactions. Thus, the difference between the two theories is almost a matter of semantics—
but not quite. Predictions of the new formulation reduce exactly to those of WCA theory when
the reference HS diameter is defined as prescribed by WCA theory. However, the two theories
differ in the way the perturbation free energy is evaluated. As a result, the BAS formulation
proves to be more forgiving with regard to the selection of the HS diameter. This feature is
of significant practical importance, as it implies that one may use any one of several trivially
simple prescriptions for defining an appropriate reference HS diameter, rather than having to
numerically minimize the solution of an integral equation, as required by earlier formulations
of the WCA theory [14–17].

While the WCA HS diameter is necessarily a function of both temperature and density,
σHS(T, ρ), the new theory can accommodate diameters which are functions of temperature
only, σHS(T ), without loss of predictive accuracy. For example, we find that we can use
a simple Boltzmann factor criterion (BFC) [28–30] to equate σHS(T ) with that value of the
intermolecular separation at which the interaction potential is equal to kT (or RT if one prefers
using molar units). For many types of pair potential, including those of Lennard-Jones or
generalized-Lennard-Jones (GLJ) form [8, 9], this prescription reduces σHS(T ) to an algebraic
function. Thus, determining σHS(T ) becomes even easier than it is when implementing the
perturbation theory of Barker and Henderson [11–13], which requires numerically integrating
over the repulsive potential to determine σHS(T ), and whose first order predictions are not as
accurate as those of WCA or our new variant thereof [10, 14–17].

The fundamental basis of the BAS theory, and other variants of the WCA theory, are
described in section 2. In section 3 we consider the origin of the Boltzmann factor criterion for
the effective HS diameter from kinetic theory and thermodynamic standpoints. In section 4 we
show the way the BAS results can be used as input for our SCOZA. Finally in section 5 we point
out why this work has special relevance to colloidal-fluid modelling and to structural–arrest
problems in particular.

2. TPT: quantitative details

The starting point of many thermodynamic perturbation theories is the decomposition of a
spherically symmetric intermolecular pair-potential, v(r), into the sum of a repulsive, v0(r),
and a perturbative, v1(r), potential

v(r) = v0(r) + v1(r). (1)

Although various separations are possible, a particularly appealing general method was
suggested by WCA [14–17] who, for a potential with a repulsive core and an attractive
tail, defined v0(r) as the potential associated with the repulsive part of the interparticle force
(such that dv(r)/dr < 0) and v1(r) as that associated with the attractive force (such that
dv(r)/dr > 0). More specifically, v0(r) is shifted up in energy by ε, the well-depth, and
v1(r) is extended into the core region so as to render both v0(r) and v1(r) and their derivatives
continuous over all r :

v0(r) =
{

v(r) + ε for r � r0

0 for r > r0
(2)

v1(r) =
{

−ε for r � r0

v(r) for r > r0
, (3)

where r0 is the position of the potential minimum (at which dv(r)/dr = 0).
In developing their perturbation theory WCA assumed that the reference fluid is one

composed of soft-repulsive particles with pair potentials identical to v0(r). Thus the excess
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Helmholtz free energy of the full fluid, Ã ≡ A×/NkT , may be expressed as the following
sum of the reference fluid free energy, Ã(0) ≡ A(0)/NkT , plus a remainder, � Ã(1) ≡
[A× − A(0)]/NkT :

Ã = Ã(0) + � Ã(1). (4)

If it is assumed that the structural and thermodynamic properties of the reference fluid are
known in advance, then the following first order (mean-field) approximation may be invoked
to calculate � Ã(1), where g0(r) is the radial distribution function of the soft repulsive reference
fluid and β = 1/kT

� Ã(1) = 2πβρ

∫ ∞

0
g0(r)v1(r)r2 dr. (5)

However, since the required reference fluid properties are not in general known,WCA proposed
some additional approximations in order to complete their perturbation theory. In particular,
WCA approximated g0(r) by assuming that the cavity function of the soft repulsive fluid is
identical to that of an appropriately chosen HS fluid, y0(r) = yHS(r) [14–17]. Since the radial-
and cavity-distribution functions associated with a given pair potential are fundamentally
related by g0(r) = y0(r) exp[−βv0(r)], the above approximation implies that

g0(r) � yHS(r) exp[−βv0(r)]. (6)

Furthermore, by functionally differentiating A(0) with respect to exp[−βv0(r)], WCA obtained
the following first order expression for A(0) in terms of the excess Helmholtz free energy of
the HS fluid [14–17]

Ã(0) = ÃHS + 2πρ

∫ ∞

0
[gHS(r) − g0(r)] r2 dr. (7)

WCA showed that the above expression for Ã(0) (which may also be derived by other
means [31, 32]) is accurate through third order in a parameter ξ , representing the length scale
over which the ‘blip function’, gHS(r) − g0(r), has a magnitude that is appreciably larger than
zero. On the other hand, the WCA predictions for � Ã(1) are only accurate to first order in ξ [33].
Thus, one should expect equation (7) to remain valid over a wider range of σHS values than
equation (5). Moreover, WCA suggested a criterion for determining σHS(T, ρ) by requiring
that the integral on the right-hand side of equation (7) vanishes. This amounts to assuming
that the soft-repulsive reference fluid and the HS fluid have the same compressibility [10].
Notice that the entire WCA construct hinges on this approximation, as it assures the accuracy
of both g0(r) and A(0), as long as σHS is determined by iteratively minimizing the integral in
equation (7) at each temperature and density.

On the other hand, Verlet and Weis [33] showed that the thermodynamic self-consistency
of the WCA theory may be improved by using σHS(T, ρ) values that differ slightly
from those obtained using the equal-compressibility criterion. Lado proposed an elegant
analytical implementation of this refinement of the WCA theory, which retains equations (1)–
(7) but replaces the equal-compressibility assumption by a self-consistency criterion that
requires iterative minimization of a slightly different integral equation in order to determine
σHS(T, ρ) [22]. The resulting diameters are invariably slightly smaller than those obtained from
the original WCA theory [8, 9, 22, 33]. The predictions of Lado’s theory are somewhat more
accurate than the original WCA theory when applied to fluids with repulsive-core potentials
that are softer than the Lennard-Jones v0(r) [9, 22]. However, when applied to a Lennard-
Jones fluid the predictions of both variants of the WCA theory are virtually indistinguishable
and in essentially perfect agreement with simulation results (except in the near-critical and
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low-density regions, where the predictions of both theories deviate somewhat from simulation
results).

The BAS theory differs from the above formulations primarily in that it takes from the
beginning a HS fluid rather than a soft repulsive fluid to be the reference system with respect
to which all perturbations are determined. This implies that the full fluid free energy may be
expressed as follows:

Ã = ÃHS + � Ã(0) + � Ã(1), (8)

where � Ã(0) and � Ã(1) are the first-order perturbation free energies associated with v0(r) and
v1(r), respectively. We approximate � Ã(0), as in WCA theory, using equation (7)

� Ã(0) = 2πρ

∫ ∞

0
[gHS(r) − g0(r)] r2 dr. (9)

So, up to this point all of the WCA and BAS are functionally equivalent, except for the criterion
used to define the optimal HS diameter. However, since the BAS theory assumes a HS reference
fluid, the attractive perturbation free energy in this case becomes

� Ã(1) = 2πβρ

∫ ∞

0
gHS(r)v1(r)r2 dr. (10)

This is again very similar to equation (5) except that g0(r) is replaced by the HS radial
distribution function gHS(r). Note that if the WCA criterion is used to determine σHS(T, ρ)

then the integrals in equations (5) and (10) become identical. This is because the only region
over which gHS(r) and g0(r) differ is when r < r0; since v1(r) is constant over this region (see
equation (3)), the WCA equal-compressibility approximation implies that the integrals over
g0(r) and gHS(r) are identical. Thus, there is strictly speaking no difference at all between BAS
and WCA predictions when the equal-compressibility criterion is used to define σHS(T, ρ).

The BAS and WCA theory predictions only differ when the reference HS fluid diameter is
varied from the value prescribed by the equal compressibility approximation, and this brings
us to the main advantage of the BAS treatment. The results presented in [10] demonstrate
that the BAS theory is less sensitive to the precise value of σHS than WCA theory. Because of
this relative insensitivity there is no need to precisely optimize the value of σHS used at each
temperature and density. One may, for example, use either the WCA or Lado prescriptions.
However, one may equally effectively use other criteria, including some which express σHS as a
function of temperature only. A particularly appealing method is based on a Boltzmann-factor
criterion (BFC) introduced by Boltzmann himself, which in its simplest form sets σHS to the
value of r at which βv0(r) = 1. For a Lennard-Jones fluid (with the WCA potential separation,
equation (2)) this BFC implies that

σHS(T ) = σ

[
2
√

βε

1 +
√

βε

]1/6

. (11)

In a slightly generalized form one may set βv0(r) = ζ to obtain the following expression
for σHS, whose predictions are within about ±2% of those obtained with equation (11) when
0.7 � ζ � 1.5

σHS(T ) = σ

[
2
√

βε/ζ

1 +
√

βε/ζ

]1/6

. (12)

Furthermore, similar expressions may be used to obtain σHS values associated with GLJ or
inverse-power potentials [8, 9]. For a GLJ potential one need only replace in equations (11)
and (12) the exponent of 1/6 by 2/n0, where n0 is the exponent which characterizes the
steepness of the GLJ repulsive core [8]. For an inverse power potential, v(r) = ε(σ/r)n, the
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BFC equations reduce to σHS(T ) = σ(βε)1/n and σHS(T ) = σ(βε/ζ )1/n , respectively. The
accuracy of the predictions obtained using the simple and explicit BFC compared to the WCA
equal compressibility criterion represent one of the main observations of the BAS treatment
and one of its main advantages.

3. The Boltzmann-factor criterion and its variants

3.1. Boltzmann-factor criterion from the standpoint of kinetic theory

The BFC identifies the effective hard sphere diameter σHS as the intermolecular distance at
which the repulsive pair potential energy v0 is of the order of the thermal energy kT . More
specifically, the effective hard sphere diameter is determined as the solution of the equation

v0(σHS) = ζ kT . (13)

The effective HS diameter determined under the BFC is only a function of the temperature,
σHS(T ). For more generality, we have incorporated on the right-hand side of equation (13) a
numerical factor ζ of order of unity; it is the same parameter that appears in equation (12). In
this section we outline the variety of values that ζ can take as different criteria based on kinetic
theory are invoked.

Historically many of the attempts at specifying the effective hard-sphere diameter of a
molecule, σHS, in a fluid resort to the concept of the distance of closest approach between
molecules. The latter concept occurs naturally in the kinetic theory of gases when considering
intermolecular collisions. Use of this concept was pioneered by Boltzmann himself [21], who
identified the distance of closest approach between molecules in a gas with the intermolecular
separation at which the potential energy of interaction between two molecules equals the
average relative kinetic energy Er of the molecules in a uniform system at equilibrium.

From Boltzmann’s prescription, when the pair potential is v0(r) (defined in equation (2))
we have

v0(σHS) = Er. (14)

Based on this Boltzmann distance-of-closest-approach criterion we can examine several
variants of the BFC to determine σHS, which differ in the value of the numerical factor ζ

in equation (13).
A first realization of equation (13) may be recovered by retracing Boltzmann’s arguments

in section 55 of [21]. (Notice that the discussion in that section of [21] is concerned explicitly
only with the distance of closest approach between molecules in a Maxwell gas, in which the
repulsive potential is of the form vrep(r) = K/(4r4), where K is a constant.) By straightforward
application of the theorem of equipartition of energy for a gas in three dimensions we find
Er = (3/2)kT . (Or, equivalently we may calculate Er as the average of the two-particle relative
kinetic energy with the probability density P(Er) corresponding to a three-dimensional gas in
equilibrium. In such a case P(Er) = (2β3/2/π1/2)E1/2

r exp(−β Er).) We observe that with
Er = (3/2)kT , Boltzmann’s distance-of-closest-approach recipe, equation (14), leads to the
BFC equation (13) with ζ = 3/2.

Basically the same calculation was performed by Andrews [29] to characterize the effective
hard-sphere diameter of the molecules in a two-dimensional gas. In this case the theorem of
equipartition of energy gives (Er)2D = kT . This result, when replaced into equation (14), leads
to the two-dimensional version of the BFC, equation (13) with the numeric factor (ζ )2D = 1.

Although in this work we are specifically concerned with three-dimensional systems,
Andrews’ result for two-dimensions is of some relevance for the present discussion, since
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it is occasionally argued that σHS may be conveniently determined from equation (13) with
ζ = (ζ )2D = 1 [34, 35]. The reasoning is that for two molecules moving in three-dimensions
to collide at some time (in the future or in the past), their velocity vectors must lie on the
same plane (and not be parallel). This feature, it is argued, justifies using the two-dimensional
result for Er. Although the three-dimensional version of this calculation appears to us to be
the natural one to apply in three-dimensional space, the value ζ = 1 is one that also results
from several other approaches, as we shall see at the end of this subsection and in the next one.

More recently Speedy et al [30] invoked a somewhat different distance-of-closest-
approach criterion to determine the effective hard-sphere diameter σHS. These authors identify
the distance of closest approach between molecules with the intermolecular separation at which
the potential energy of interaction between two molecules equals the average relative kinetic

energy Er
col

of a pair of molecules in a uniform system at equilibrium that will undergo a
collision within the next unit of time. Thus, instead of equation (14), these authors propose the
criterion

v0(σHS) = Er
col

, (15)

where

Er
col =

∫ ∞

0
dEr Er Pcol(Er), (16)

in which Pcol(Er) is the probability density that, starting from a typical phase–space
configuration for a many-particle system at equilibrium, a pair of molecules with relative
kinetic energy Er will collide within the next unit of time. The expression for Pcol(Er) may
be extracted from several classical sources [36–38]:

Pcol(Er) = β2 Ere−βEr . (17)

With this expression equations (15) and (16) give the formula used by Speedy et al [30] to
determine σHS

v0(σHS) = 2kT, (18)

which agrees with the BFC, equation (13), with the numerical factor ζ = 2.
We conclude this section by calling attention to still another kinetic-theory derivation of the

BFC. Instead of the average relative kinetic energy Er
col

in equation (15) we may consider the
most probable relative kinetic energy Emp

r for pairs of molecules that will undergo a collision
within the next unit of time

v0(σHS) = Emp
r = kT, (19)

where the second equality is the value of Er that maximizes Pcol(Er) given by equation (17).
Comparing this result with equation (13) we see that this new recipe based on kinetic theory
leads to the BFC with ζ = 1.

3.2. Boltzmann factor criterion from a thermodynamic standpoint

An alternative way to determine a temperature-dependent effective hard sphere diameter
σHS(T ) is based on the one-dimensional integral, which follows from the use of the Barker–
Henderson version of TPT [11–13, 23]

σHS =
∫ ∞

0
dr

(
1 − e−βv0(r)

) =
∫ r0

0
dr

(
1 − e−βv0(r)

)
, (20)

where in the second equality we have taken into account that v0(r) vanishes for r > r0.
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This expression of σHS, which involves the integral of the negative of the Mayer function
of the modified repulsive potential v0(r), seems at first sight to be very different from the BFC
recipe, equation (13). Nevertheless, as commented upon by Hsu et al [39], equation (20) leads
to values of σHS that are close to those obtained from the BFC with ζ = 1. The purpose of this
section is to show how σHS determined with equation (20) can also be thought as approximately
equivalent to the BFC.

To show this we first perform an integration by parts of equation (20). Noticing that
r(1 − e−βv0(r)) vanishes both at r = 0 and at r0, integration by parts of equation (20) leads to
the virial-like expression

σHS =
∫ r0

0
dr r

{−βv′
0(r)

}
e−βv0(r), (21)

where v′
0(r) denotes the derivative of the modified repulsive potential with respect to the

intermolecular separation.
We consider now the BFC, equation (13) when ζ = 1. An alternative way of writing this

criterion, βv0(σHS) = 1, is as follows:

σHS = σHSβv0(σHS) =
∫ r0

0
dr σHS {βv0(r)} δ(r − σHS). (22)

In the second equality δ(r − σHS) is the Dirac delta function, and we have implicitly assumed
that 0 < σHS < r0 is satisfied. Recalling that δ(r −σHS) = dθ(r −σHS)/dr , where θ(r −σHS)

is the step function, we can integrate by parts to obtain

σHS = lim
τ→0

I1(τ ) + I2, (23)

where

I1(τ ) =
∫ r0

τ

dr
d

dr
{σHSβv0(r)θ(r − σHS)} , (24)

I2 =
∫ r0

0
dr σHS

{−βv′
0(r)

}
θ(r − σHS). (25)

The integral I1(τ ) is zero because the product v0(r)θ(r − σHS) vanishes both at r = r0 and
at r = τ < σHS. We conclude that under the BFC σHS can be calculated with the integral I2,
equation (25).

To complete this discussion we notice that θ(r − σHS) vanishes for r < σHS and that
r0 − σHS is small, so to a good approximation we can replace the factor σHS in the integrand
of I2 by the variable r . Thence the BFC for σHS may be written in the integral form

σHS �
∫ r0

0
dr r

{−βv′
0(r)

}
θ(r − σHS). (26)

This expression should be contrasted with the Barker and Henderson criterion, equation (21).
Clearly the two estimates of σHS will be comparable when the Boltzmann factor exp[−βv0(r)] is
well approximated by the step function θ(r−σHS). Consideration of the plot of exp[−βv0(r)] as
a function of r shows that this is not an unreasonable expectation, thus justifying the numerical
observation [39] that σHS calculated with equation (20) is roughly equivalent to σHS calculated
under the BFC criterion (13) with ζ = 1. In the next section we examine numerically the
approximate equivalence of the two criteria for the determination of σHS(T ).

Besides the Barker–Henderson integral (20), an alternative thermodynamically based
criterion for associating a T -dependent HS diameter σHS(T ) to a given continuous repulsive
potential v0(r) may be proposed by requiring that the HS- and the v0(r)-systems have the same
second virial coefficient. We find that such a criterion gives σHS(T ) values that are similar to
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those obtained with equation (12) when setting ζ � 0.4. Like the Barker–Henderson criterion,
the equal-virial coefficient criterion predicts values for σHS(T ) that are somewhat too large for
use as the HS reference system in the BAS theory [10].

3.3. Simple harmonic approximation for estimating σHS

In this section we consider the case in which the original interaction potential v(r) between
pairs of particles is of the Lennard-Jones type, and compare σHS(T ) calculated under the BFC
with ζ = 1 (equation (11)) and the Barker–Henderson integral (20). We also present an
approximate analytical method for estimating σHS under the latter criterion.

The proposed analytical approximation is obtained by representing the modified repulsive
potential v0(r) with a quadratic polynomial in the neighbourhood of r0:

v0(r) � a(r − r0)
2, r � r0. (27)

The constant a is adjusted to match the curvature of v0(r) to the left of the minimum; the result
is a = 72ε/21/3σ 2 for a Lennard-Jones potential (and a = n2

0ε/2(n0+4)/n0σ 2 for the generalized
Lennard-Jones potential). With approximation (27) for v0(r), equation (20) can be evaluated
analytically; when v(r) is the Lennard-Jones potential we obtain

σ ∗
HS = 21/6

[
1 − 1

12

(
π

2β∗

)1/2

erf(
√

72β∗)

]
, (28)

where erf(x) is the error function. For convenience we have introduced the reduced diameter
σ ∗

HS ≡ σHS/σ and the reduced reciprocal temperature β∗ ≡ βε, both defined in terms of the
Lennard-Jones parameters σ and ε.

In figure 1 we compare the reduced effective hard-sphere diameter σ ∗
HS for the Lennard-

Jones potential as a function of the reduced reciprocal temperature β∗ when calculated with
the BFC (using ζ = 1) and with the Barker–Henderson integral. The BFC (solid curve) is
computed with equation (11). The BH integral is evaluated (i) numerically (dashed curve) and
(ii) under the harmonic approximation to v0(r) in the argument of the integral (dashed–dotted
curve).

The figure shows that, for a given reduced reciprocal temperature, the HS diameter σ ∗
HS

obtained with the Barker–Henderson integral is larger than the reduced diameter estimated
with the BFC criterion with ζ = 1. In fact, the Barker–Henderson estimate of σHS(T ) is
approximately equal to the estimate obtained with the BFC with ζ � 0.6, as calculated
with equation (12). The Barker–Henderson estimate of σHS(T ) is a bit too large for the
corresponding HS system to be used as the reference in the BAS perturbation theory [10].

Figure 1 shows that equation (28), although a reasonable approximation to the Barker–
Henderson integral, gives an even larger σHS(T ) when β∗ > 2, thus deteriorating the quality
of the HS reference system even more. A similar deterioration occurs for β∗ < 0.5, when
the harmonic approximation leads to much too small HS diameters. On the other hand,
and because of the inaccuracy in the approximation, the estimate (28) for the HS diameter
is in close agreement with σHS(T ) calculated with the ζ = 1 BFC criterion (12) whenever
0.5 < β∗ < 1.5.

4. SCOZA

4.1. SCOZA for models with hard-core

Much of our SCOZA work has been done for systems with hard-core (HC) pair interac-
tions v(r) consisting of a repulsive HC (diameter σHS) and an adjacent attractive tail w(r):
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Figure 1. Comparison of the reduced hard-sphere diameter σ ∗
HS as a function of the reduced

inverse temperature β∗ as estimated for the Lennard-Jones potential by the BFC and the Barker
and Henderson integral. ——: σHS(T ) calculated with the BFC, equation (11); – – –: σHS(T )

calculated with the Barker–Henderson integral criterion, equation (20); — · —: σHS(T ) calculated
with equation (28) bases on a harmonic approximation to v0(r) in the argument of the Barker–
Henderson integral.

v(r) =
{

∞ for r � σHS

w(r) for r > σHS.
(29)

We shall begin by considering this case, and then go on to the soft-core extension. For
convenience, we shall focus on pair interactions that are linear combinations of Yukawa tails
(labelled by Greek indices), i.e.

w(r) =
∑

ν

Kν

r
exp[−zν(r − σHS)]. (30)

Here we can allow w(r) to be explicitly density dependent (w(r) = w(r; ρ), ρ being the
number density). To be more specific, we introduce a density-dependent inverse screening
length zν(ρ).

The SCOZA is based on the Ornstein–Zernike relation

h(r) = c(r) + ρ

∫
dr′ c(r ′)h(|r − r′|) (31)

supplemented by a MSA-type closure relation

g(r) = 0 for r � σHS (32)

c(r) = cHC(r) + K (ρ, T )w(r) for r > σHS. (33)

Here h(r) and c(r) are the total and the direct correlation functions, g(r) = h(r)+ 1 is the pair
distribution function and T is the temperature. cHC(r) is the direct correlation function for the
hard-core reference system for which we choose the Waisman parametrization [40], which is
known to reproduce simulation results for the structural properties with high accuracy. For
r > σHS, cHC(r) = (K0/r) exp[−z0(r −σHS)], where K0 and z0 are known functions of ρ (see
the appendix of [41] for details). The state-dependent function K (ρ, T ) in equation (33) is not
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fixed a priori and is determined by the requirement of thermodynamic consistency between
the energy and the compressibility routes: let χred ≡ ρkT χT be the reduced (dimensionless)
isothermal compressibility, given via the compressibility route by

(χred)
−1 = 1 − ρĉ(q = 0), (34)

where the circumflex ˆ indicates the Fourier transform; furthermore, let u be the excess (over
that of the ideal gas) internal energy per unit volume, given via the energy route by

u = 2πρ2
∫

dr r2w(r)g(r); (35)

if χred and u come from the unique Helmholtz free energy, then they are related via

ρ
∂2u

∂ρ2
= ∂

∂β

(
1

χred

)
. (36)

For the special choice of the pair interaction w(r) given by equation (30) along with
the Waisman parametrization of cHC(r), the SCOZA benefits from the availability of the
semi-analytic solution of the MSA. Two different approaches to this solution have been
proposed in the literature: the (original) Laplace-transform route [42–45] and the Wiener–
Hopf factorization technique introduced by Wertheim and Baxter [46, 47]. In the following
we outline the formulation of the SCOZA for many-Yukawa potential tails using the Baxter
approach, and refer the reader interested in a more detailed presentation to [48].

Under certain conditions [49], the solution of the OZ equation is equivalent to the solution
of the following two integral equations:

2πrc(r) = −Q′(r) + ρ

∫
Q(t)Q′(r + t) dt (37)

2πrh(r) = −Q′(r) + 2πρ

∫
(r − t)h(|r − t|)Q(t) dt (38)

introducing the so-called factor function Q(t). For a system with n Yukawa tails the factor
function is characterized by (2n + 2) as yet undetermined coefficients (a, b, Cν and Dν ), i.e.

Q(r) = Q0(r) +
∑

ν

1

zν

Dνe−zν (r−σHS), (39)

with

Q0(r) = a

2
(r − σHS)

2 + b(r − σHS) +
∑

ν

1

zν

Cν

[
e−zν (r−σHS) − 1

]
(40)

for 0 < r < σHS and Q0(r) = 0 for r > σHS. Introducing further Gν via

Gν = zν

∫ ∞

σHS

re−zν (r−σHS)g(r) dr (41)

one can derive (along with the MSA closure relation) a set of 2n non-linear equations for
the 2n unknowns Gν and Dν : n of these equations are linear in the Dν ; their solution gives
Dν = Dν(ρ, Gν). Finally one can also relate a to these unknowns, leading thus to an expression
a = a(Gν, Dν); the relations are summarized in [50].

The factorization formalism leads to

(χred)
−1 =

( a

2π

)2
, (42)

so that equation (36) now becomes

ρ
∂2u

∂ρ2
= 2

a

(2π)2

∂a

∂u

∂u

∂β
. (43)
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Inserting a = a(Gν, Dν) with Dν = Dν(ρ, Gν) into the partial differential equation (43), one
arrives at

ρ
∂2u

∂ρ2
= 2

a

(2π)2

(∑
ν

∂a

∂Gν

∂Gν

∂u

)
∂u

∂β
= B(ρ, u)

∂u

∂β
(44)

once a, ∂a/∂Gν and ∂Gν/∂u have been expressed as functions of ρ and u. The required
expressions are obtained by implicit differentiation of a set of nonlinear equations in the Gν

and u that are summarized in [48]. Equation (44) is now a quasilinear partial differential
equation of diffusion type which has to be solved numerically (as described in detail in [51])
on a (β, ρ) grid, [0, β f ] × [0, ρ0], with a suitable initial condition (for β = 0) and suitable
boundary conditions (here, the high-temperature approximation for the upper density limit
ρ0σ

3 = 1). In contrast to conventional liquid-state theories, the SCOZA can be solved up to
the critical point; special care has to be taken in the region of instability (characterized by a
negative compressibility) which has to be excluded from the region of integration.

From the solution of the partial differential equation (44) we obtain the full information
about the structure and the thermodynamic properties of the system. For instance, the pressure
P and the chemical potential µ (i.e. two quantities required to determine the phase behaviour)
are calculated from

∂

∂β
(β P) = −u + ρ

∂u

∂ρ
(45)

∂

∂β
(βµ) = ∂u

∂ρ
(46)

via thermodynamic integration.

4.2. Soft-core extension

We now consider the case in which we have soft-core in the pair potential. One can still use
SCOZA with a hard-reference potential of diameter σHS to describe a soft-core potential given
in terms of a characteristic length σ , as long as the ratio σHS/σ is allowed to be appropriately
dependent on the thermodynamic state. This is already the standard procedure in applying
existing versions of TPT to soft-core potentials, such as the LJ potential, and there is no
problem in using SCOZA with a state-dependent σHS/σ . One need not change any of the
equations that define the SCOZA, equations (31)–(36), as long as one includes in ∂2u/∂ρ2

in equation (36) the change in u resulting from any ρ-dependence of σHS that occurs in the
version of TPT being used as SCOZA input.

One can also abandon the hard-core condition altogether in using the SCOZA. One
sees from the derivation of the SCOZA critical exponents given in [52] that the SCOZA
critical exponents are unchanged if one replaces the core-condition g(r) = 0 for r < σHS by
prescribing instead that g(r) be given by some explicit function for r < σHS, or that c(r) be
prescribed for r < σHS as well as for r > σHS. Thus one can treat a soft-core potential by
setting σHS = 0 in equations (29) through (33) by replacing the cHS(r) in equation (33) by a
prescribed reference-system cref(r) appropriate to a soft potential. Integrals involving such a
cref(r) and the corresponding href (r) can then be treated using the analytic recipes developed
in our earlier TPT papers [8–10].

An explicit recipe involving the combined use of the BAS theory and SCOZA is the
following, which applies to the typical case of a potential that has a soft repulsive head and
an attractive tail. One uses the WCA criterion to separate the full potential v(r) into its
soft repulsive v0(r) and attractive v1(r) contributions. Then one uses SCOZA to calculate
the thermodynamic properties of a fluid with hard-core plus a tail, where the value of the
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HS diameter is determined from the shape of the WCA soft-repulsive core potential using
the BFC. Then, BAS theory is used to determine the difference between the thermodynamic
properties of the soft- and hard-repulsive reference fluids (using the WCA correction integral
as prescribed in the BAS theory). This procedure provides a quantitative method for correcting
the hard-core SCOZA predictions to account for the softness of the true core potential.

5. Conclusions

Mode-coupling studies of glass transitions in colloid models with interactions that include
strong short-range attraction yield quantitative estimates of transition locations that have proved
to be extremely sensitive to the accuracy of the static structure factors that are used as input [53].
Unless structure factors for a given potential are of very high accuracy, this means that there
will be uncertainty as to whether any disparity in transition behaviour between experimental
and mode-coupling results are due to a poor choice of model potential, an intrinsic error in
mode-coupling theory, or inaccuracy in the structure factor.

SCOZA results for the structure factors have already been shown to be of very high
accuracy for simple Lennard-Jones-like potentials. The extension of those results to colloid
models that include strong short-range attraction using TPT to implement the SCOZA
evaluation promises similar accuracy for such models.
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